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This paper reports preliminary analyses comparing results on the state-administered 8th Grade 
and 9th Grade algebra Texas Assessment of Knowledge and Skills (TAKS) for a treatment and a 
control group. The treatment group consisted of 127 students from algebra classes at a highly 
diverse school in central Texas taught by two relatively new teachers using a network-supported 
function-based algebra (NFBA) approach as integrated with the ongoing use of an existing 
school-wide algebra curriculum. The control group was comprised of 99 students taught by two 
more-senior teachers in the same school using only the school-wide algebra curriculum. The 
intervention consisted of implementing 20-25 class days worth of NFBA materials over an 
eleven-week period in the spring of 2005. Because the students were not randomly assigned to 
the classes, the study is a quasi-experimental design. Using a two sample paired t-Test for means, 
statistically significant results for the treatment group (p-value one tail = 0.000335  > α = 0.05) 
were obtained.  We can conclude the NFBA intervention was effective in improving outcomes 
related to learning the algebra objectives assessed on the 9th Grade TAKS. 
 

1.0 Introduction 
To date, the multiple-strands based approach to curricula promoted by the National Council 

of Teachers of Mathematics (1989, 2000) has not displaced the single-strand Algebra I course as 
gatekeeper in the educational system of the United States. If anything, the standard, “stand-
alone”, Algebra I course is now even more central at many levels, including in state curricula 
(e.g., minimum course requirements and exit exams) and in nationally administered tests (e.g., 
the new SAT tests).  As a result, improving student outcomes related to the content of the 
traditional Algebra I curriculum is, perhaps, the single most strongly felt need relative to 
secondary mathematics education. Given the raised expectations regarding introductory algebra, 
we look to ask if there are ways of systematically improving on expected student outcomes in 
ways that move beyond the current overemphasis on addressing performance shortcomings with 
remediation?  Our study looks to move in this direction.  As illustrated by the results for our 
control group, past student performance on state-administered tests tends to be predictive of 
future testing outcomes.  In our effort to identify approaches that are likely to improve expected 
student outcomes, not maintain them, we compared paired 8th and 9th Grade TAKS results for the 
students in our study and asked the question:  Do the students in our treatment group 
outperformed their peers in the control group on the algebra objectives tested on the state 
administered, ninth-grade, Texas Assessment of Knowledge and Skills (TAKS)?  Did the 
network-supported function-based algebra intervention have the effect of improving on expected 
student outcomes?  

Our intervention centered on the use of function-based algebra as supported by generative 
activity design in a next-generation classroom network technology (i.e., the TI-Navigator 2.0 
network combined with classroom sets of TI-84 Plus calculators). We call this approach 
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network-supported function based algebra (NFBA). After providing some background for our 
study we report our results. Because the students were not randomly assigned, the study is based 
on a quasi-experimental design. Using a two sample paired t-Test for means, statistically 
significant results in outcomes for the treatment group (p-value one tail = 0.000335  > α = 0.05) 
were obtained. 

2.0 Background 
There are three strands of analysis that are brought together in framing our study: (1) using  

function-based algebra (FBA) in a way that speaks more directly to the structural aspects of a 
standard introductory algebra curriculum, (2) situating this version of a function-based approach 
relative to generative activity design as supported by the capabilities of next-generation 
classroom networks (Stroup, Ares & Hurford, 2005) and (3) explaining our use of performance 
on previous high stakes mathematics testing to evaluate the effectiveness of the algebra-specific 
interventions implemented for this study. 

Function-Based Algebra Revisited – Emphasizing Mathematical Structure 
In ways that highlight the idea of function, affordable technologies like the graphing 

calculator have long been recognized to have the potential to substantively alter the organization 
of teaching and learning algebra concepts. Indeed, a number of approaches to pursuing function-
based algebra (FBA) are discussed in the research literature (for an overview see Kaput, 1995).  
Many of these approaches were developed as part of an ambitious, and still ongoing, effort to 
fundamentally reorganize school-based mathematics to focus on modeling.   For curricula, this 
would mean that the formal set-theoretical approaches to defining function that had come to be 
associated with the “new math” movement would be downplayed and largely replaced by an 
approach highlighting how functions can be used to model co-variation – i.e., how one variable 
is related to, or co-varies with, another variable. Computing technologies like the graphing 
calculator were to support significant engagement with, and movement between, representations 
of functions in symbolic, tabular and graphical forms. Indeed a technology-supported 
engagement with these “multiple representations” of functional dependencies, especially as 
situated in motivating “real world” contexts, has come to typify both what function-based 
algebra is and why function-based algebra it is expected to be effective with learners. 

In the United States this modeling-based approach to FBA informed the development of the 
“standards-based” mathematics curricula funded by the National Science Foundation and then 
incorporated into various levels of “systemic reform” initiative also supported by NSF.  These 
systemic reform initiatives, anticipating the language associated with the more recent No Child 
Left Behind legislation, were to “raise the bar” and “close the gaps” in student performance. The 
significance of this modeling-focused alignment notwithstanding (e.g., the State Systemic 
Initiative in Texas played a considerable role in the State-wide adoption of graphing technologies 
for algebra instruction and assessment), in day-to-day practice a modeling-focused approach to 
FBA has fallen well short of displacing much of what still constitutes the core of traditional 
algebra instruction. In part, the feedback from educators seems to be that as powerful as “real 
world applications” might be in motivating some students, the “bottom line” is that abstractions 
and formalisms are what continue to be emphasized on standardized exams and thus are what 
teachers feel considerable pressure to engage. Among school-based educators who are feeling 
enormous pressure to improve testing outcomes, modeling-based FBA is simply not seen as 
sufficiently helpful in addressing the core “structural” topics of a standard algebra curriculum.  
In framing our study, however, it is important to underscore that this perceived shortcoming is 
not a limitation in the potential power of using a function-based approach, but is only a limitation 
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in a particular implementation of FBA that is, itself, principally motivated by the goal of making 
modeling the overarching focus of school-based mathematics (and far less by improving 
outcomes related to learning introductory algebra). For our study we take the strong position that 
while emphasizing modeling should continue to be important, a function-based approach also 
has enormous potential to improve student understanding of the structural aspects of introductory 
algebra.  To make this point both with teachers and in our materials development, we have found 
it helpful to advance the following deliberately provocative, but still sincere, claim:  When 
viewed through the lens of a larger sense of what FBA can be, nearly 70% of a standard 
introductory algebra curriculum centers on only three big topics.  These three big topics are: 
equivalence (of functions), equals (as one kind of comparison of functions), and a systematic 
engagement with aspects of the linear function. This approach, as it is to be investigated in this 
study, builds on ideas associated with FBA introduced by Schwartz and Yerushalmy (1992) (see 
also Kline, 1945). 

A major strength of this more structurally-focused, function-based algebra is that it allows for 
a consistent interpretations of both equivalence and equals in ways that students can use to 
understand the seeming ambush of “rules for simplifying” and “rules for solving” typically 
presented early-on in a standard algebra curriculum.  If the expression x + x + 3 is equivalent to 
the expression 2x + 3, then the function f(x) = x + x + 3 and the (simplified) function g(x) = 2x + 
3, when assigned to Y1 and Y2 on the calculator, will have graphs that are everywhere 
coincident.  They will also have paired values in the tables that are, for any values in the domain, 
the same.  Students will say “the graphs” are “on top of each other.”  This “everywhere the same-
ness” associated with equivalence then will be readily distinguished from equals, as just one kind 
of comparison of functions.  Equals comes to be associated with the value(s) of the independent 
variable where the given functions intersect (and > is associated with where one function is 
“above” another; < where one is “below”).  The students will understand from looking at the 
graphs that the function f(x) = 2x and the function g(x) = x + 3 are clearly not equivalent (they 
are not everywhere the same).  But there is one value of x where these functions will pair this x 
with the same y-value (the students will say there is one place where the functions are “equal” or 
“at the same value”).  Graphically, equals is represented as the intersection in a way that is quite 
general and that readily extends beyond comparisons of linear functions (e.g.,  -x2 + 2x + 8 = x2 
– 4x + 4).     

This distinction between equivalence and equals is helpful because in a standard, non-
function based, algebra curriculum rules for simplifying expressions and rules for solving 
systems of equations are introduced very near each other and, not surprisingly, often become 
confounded.  In addition students will feel like they have no ready way of checking their results, 
other than asking the teacher. In marked contrast, using a function-based approach, as supported 
by the use of a combined graphing, tabular and symbolic technology like a graphing calculator, 
students can readily “see” the difference between these ideas and can use these insights to make 
sense of results from “grouping like terms” as distinct from “doing the same thing to both sides”.  
This then allows the students to test their own results, using the technology, for either 
simplifying or solving.  For simplifying they can ask themselves if the resulting simplified 
function is everywhere “the same” as the given function? For solving systems of linear equations 
they can ask did their attempts to “do the same thing” to the linear functions on both sides of the 
equation preserve the solution set (i.e., the x-value at the intersection)?  Having students be able 
to distinguish and make sense of these two core topics in a standard algebra curriculum is 
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significant and illustrates the power of FBA to help with structural aspects of a standard Algebra 
I curriculum. These ideas were emphasized in the materials we developed. 

Of course, a modeling-oriented approach to FBA can be helpful in supporting student 
understanding of the third of the big three topics:  a systematic engagement with aspects of the 
linear function. But herein we want to continue to illustrate some elements of a less modeling-
centric engagement with FBA.  As a result, we will illustrate implementing aspects of studying 
linear functions using generative activity design as supported by new network technologies.  The 
effectiveness of this structural approach to FBA, without network capabilities, has begun to be 
established (cf., Brawner, 2001).  We now move on to consider the role new network 
technologies can have in further enhancing function-based algebra. 

Supporting Generative Design with TI-Navigator 2.0TM 

Briefly, generative design (cf. Stroup, Ares & Hurford, 2005) centers on taking tasks that 
typically converge to one outcome, e.g., “simplify 2x + 3x”, and turning them into tasks where 
students can create a space of responses, e.g., “create functions that are the same as f(x) = 5x.”  
The same “content” is engaged for these two examples, but with generative design a “space” of 
diverse ways for students to participate is opened up, and the teacher, based on the responses, 
can get a “snapshot” of current student understanding (so, for example, if none of the functions 
the students create to be same as f(x) = 5x involve the use of negative terms, the teacher can see 
in real time that students may not be confident with negative terms and can use this information 
to adjust the direction of the class).  To illustrate how generative design and NFBA can help with 
the third of the three core topics in a standard algebra curriculum, we’ll briefly sketch some of 
the activities we used in our intervention. 

The Navigator 2.0TM system allows students to move an individual point around on his/her 
calculator screen and also have the movement of this point, along with the points from all the 
other students, be projected in front of the class.  In one introductory activity students are asked 
to “move to a place on the calculator screen where the y-value is two times the x-value”.  There 
are many places the students can move to in satisfying this rule, and this is what makes the task 
generative.  Often the majority of the points are located in the first quadrant and this gives the 
teacher some sense of where the students are in terms of confidence with negative x- and y-
values.  This exploration of a rule for pairing points does describe a function and this approach to 
creating functions is not dependent on co-variation (indeed, should the teacher want to discuss it, 
this activity can be used to highlight a set-theoretic approach to defining a function).  After 
observing that “a line” forms in the upfront space, all the points then can be sent back to the 
students’ calculators and can act as “targets” for creating different functions on their calculators 
(in Y1= , Y2 =, etc.) that include (“go through”) these points. Then the students can send up 
what they consider their “most interesting” functions.  A space of often quite interesting 
equivalent expressions is thereby created and shared in the upfront-space.  To further explore 
ideas related to linear functions, students also can be given a rule like “move to a place where 
your x-value plus your y-value add up to 2.” Again a “line” forms but now when the points are 
sent back to calculators, the students are pushed to explore ideas related to moving from a linear 
function in standard form (i.e., x and y summing to 2) to the same function being expressed in 
slope-intercept form (the form the students must use on the calculators in order to send a function 
through the points).  Again, these and many other structural ideas found in a standard algebra 
curriculum can be explored using network-supported function-based algebra.  

Improving on Expectations 
As is mentioned earlier, the intent of the No Child Left Behind Legislation in the United 
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States is to “raise the bar” of what is expected of all students and to “close the gaps” in 
performance of currently underserved populations.  The effort is to be forward looking as higher 
expectations and measurable progress are to present a tight system of positive feedback in 
driving demonstrable improvement in educational outcome.  Even in a time of heightened 
political partisanship in the United States, this vision is still seen as compelling and potentially 
unifying.  But as systems theorists (cf., Senge, 1994) are quick to remind us, a challenge in 
implementing major structural reforms is ensuring that the intended dynamics meant to both 
characterize and drive the change – in this case positive forms of feedback between raised 
expectations and measurable outcomes – are not themselves overwhelmed by unanticipated and 
unintended consequences of what may be well-intending implementation.  Relative to learning 
algebra, one widely used strategy is to preserve the current approaches to teaching algebra and 
then address shortcomings in student outcomes with remediation. The problem is that 
remediation, almost by definition, is an inherently backward looking and corrective strategy.   Its 
role is to fix what is seen as broken, not to drive forward progress. Relative to mathematics 
education, with more and more effort at each grade level (especially in underperforming schools 
but also in lower “tracks” in higher performing schools) spent on correcting for past or 
anticipated shortcomings (e.g., “reviewing” material not mastered from previous years, funding 
remediation classes during the school year and/or in the summer, or spending considerable class 
time practicing test-taking skills) attention to proactive strategies (strategies that improve on 
expected outcomes) is being compromised.  From a structural point of view a positive feedback 
loop – like that between raised expectations and measurable progress found at the heart of the 
NCLB legislation – needs practical forward looking and forward acting strategies to be effective. 

To make the case for NFBA being an example of one such strategy, we look to compare our 
treatment group outcomes on the 9th Grade TAKS algebra objectives relative to what might be 
expected based on previous performances on the 8th Grade TAKS. 

 
3.0 The Study 

Research Question: Does the network-supported function-based approach outlined above 
improve the performance of the treatment group in statistically significant ways relative to the 
performance of control group peers?  

The Sample  
The study participants were 226 students from a diverse high school in central Texas.  All the 

students were enrolled in “non-repeater” (non-remedial) sections of Algebra I and nearly all the 
students were in ninth grade. Two relatively junior teachers were assigned by the department 
chair to the experimental group and two more-experienced teachers were assigned to the control 
group:  127 students were in the treatment group and 99 students were in the control group. 

Activities  
In their Algebra I class, the treatment groups used a NFBA over nine weeks of instruction in 

the spring of 2005.  The treatment and control groups kept their curricula on the same topics but 
the experimental group used the NFBA materials, on average, approximately two days a week.  

Methods  
The raw 8th and 9th grade scores for the State-administered TAKS tests were obtained for 

the students participating in the study. The 8th grade TAKS was taken before the intervention 
and the 9th grade TAKS scores for the algebra objectives were collected after the intervention.  

Analyses 
The raw scores on the 8th grade TAKS and the algebra items on the 9th grade TAKS were 
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converted to percent-correct results. Table 1 and Figure 1 show the comparison of the means for 
the 8th and 9th grade TAKS for the treatment and control groups.  

 
 Treatment Control 

 
8th GRADE TAKS SCORES 53.8 56.4 
9th GRADE TAKS SCORES

(Algebra Items) 57.9 56.1 
   

Table 1. Mean TAKS Score Results for Treatment and Control Groups 
 

MEANS COMPARISON BETWEEN 8th AND 9th GRADE 
TAKS
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TAKS 8th Grade TAKS 9th Grade

MEASURES OF STUDENT ALGEBRA PERFORMANCE BEFORE AND 
AFTER INTERVENTION

MEAN TREATMENT
MEAN CONTROL

 
Figure 1. Means Comparison of TAKS Results 

Assessments 

 
We implemented two approaches to study changes attributable to the intervention: (1) comparing 
the student performances between the treatment and control groups first before the intervention 
(8th Grade TAKS) and then after the intervention (9th Grade TAKS for Algebra Items); (2) 
comparing the paired student performances before and after the intervention for the control 
group and then the treatment group.   

First approach: Comparison Between Treatment and  
Control Group Results First Before and then After the Intervention  

Using this first approach no statistical difference was found between treatment and control 
groups’ results either before or after the intervention.  The graph in Figure 1, however, suggests a 
need for additional analyses. On the graph it is clear that, although no statistically significant 
differences were found using the given methods, the treatment group started off about 2% lower 
than the control group on the average 8th grade TAKS scores. Then after the intervention the plot 
of the 9th grade results shows that the students in the control group maintained almost the same 
average on the 9th grade TAKS score (the dotted line is almost completely horizontal, showing 
no change) whereas the treatment group’s graph shows appreciable improvement, approximately 
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4%. This suggests the possibility of comparing paired scores before and after intervention, for 
the control and the treatment groups separately, using a two-sample paired t-Test for the means. 

Second approach: Comparison of Paired TAKS Scores Before 
 and After Intervention for the Control Group and then for the Treatment Group 

We performed a two sample paired t-test for means for the control group to look for changes 
in TAKS scores before and after intervention. As might be suspected from examining graph for 
the control group in Figure 1, the results of the t-test show no evidence that the means for the 
control group before and after the intervention are different (p-value one tail = 0.402 > α = 0.05). 
As a result we can conclude that the students in the control group maintained consistent averages 
for the 8th grade and 9th grade algebra TAKS scores.  There was no statistically significant 
improvement.  This result is consistent with the sense that absent changes in practice, 
performance in one year is likely to predictive of performance in the next. 

 When we implemented a two sample paired t-test for the means for the treatment group, 
the results (p-value one tail = 0.000335  > α = 0.05) provided strong evidence of differences in 
means before and after intervention. This suggests the students in the treatment group improved 
significantly in paired results on the 8th and 9th Grade TAKS. Considering that the treatment and 
control groups were comparable, that no improvement was shown for the paired 8th and 9th grade 
TAKS scores in the control group, and that improvement was shown for the paired 8th and 9th 
grade TAKS scores in the treatment group, we have strong evidence to say that this improvement 
in TAKS scores was an effect of the intervention.   Network-supported function-based algebra 
does appear to have been proactively effective in improving student outcomes. 
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